The Plasma Magnet

John Slough

University of Washington

March 23-24, 2004
Development of the Plasma Magnet for Deep Space Exploration

John Slough, Samuel Andreason, and Louis Giersch

Research Institute for Space Exploration
University of Washington
The Plasma Magnet

• The singularly most important aspect is the possibility of achieving multi-Megawatt thrust power from the solar wind.

• The ultimate spacecraft speed powered by the plasma magnet is that of the solar wind (350 to 800 km/s).

• As opposed to the solar sails, the dynamic nature of the plasma magnet provides a constant thrust regardless of distance from the sun.

• The jet power scales with the size of the magnetic bubble. A 20 kW rotating magnetic field (RMF) can produce a magnetic bubble intercepting up to 10 MW of thrust power. The effective “thruster” efficiency can be greater than 1 – and as large as $\eta \sim 500$.
The major difficulty in the original concept of course was the magnet mass.

The mass problem is solved by having the coil currents conducted in a plasma rather than a superconducting coil. In this way the mass of the sail is reduced by orders of magnitude for the same thrust power.

The question now becomes how to generate and sustain the currents.
How are the plasma currents generated and sustained?

Plasma Magnet from Rotating Magnetic Fields

• No copper/superconducting magnet required

• Results from Phase I have demonstrated generation and sustainment of high β dipole plasma equilibria with 10 kA of azimuthal plasma currents
Illustration of the Generation and Self-Inflation of the Plasma Magnet

- Rotating Magnetic Dipole field lines
- Steady dipole Field generated by Electrons moving Synchronously with RMF

Plasma Magnet Radius: 1

Plasma electrons
Physics of RMF Current Drive

Electron equation of motion in rotating field, \(\mathbf{B}_\omega \):

\[
-\frac{e}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) - \mathbf{v}_{\text{ei}} \mathbf{v} = \omega \mathbf{v}
\]

where,

\[
\mathbf{B}_r = B_\omega \cos(\omega t), \quad \mathbf{B}_\theta = B_\omega \sin(\omega t), \quad \mathbf{E} = E_z = \omega r B_\omega \cos(\omega t)
\]

Assuming \(\omega \ll \nu_{\text{ei}} \), one obtains the following Ohm's law:

\[
\mathbf{E} = \eta \mathbf{j} + \frac{1}{n e} \mathbf{j} \times \mathbf{B} \quad \quad \eta = \frac{m \nu_{\text{ei}}}{n e^2} \quad \quad \mathbf{j} = -n e \mathbf{v}
\]

The Hall term dominates when,

\[
\frac{B_\omega}{n e} >> \eta \quad \Rightarrow \quad \frac{eB_\omega}{m} \equiv \omega_{\text{ce}} >> \nu_{\text{ei}}
\]

In a metal conductor the Hall term is small (large \(\nu_{\text{ei}} \)), and one has the rotating field penetrating only the classical skin depth \(\delta = (2\eta/\mu \omega)^{1/2} \).

The \(\theta \) component:

\[
E_\theta = \eta j_\theta - \frac{1}{n e} \left(u_r B_z - \langle j_z B_r \rangle \right)
\]

The Hall term has a pondermotive component, the \(\langle j_z B_r \rangle \) term acting in the \(\theta \) direction. It is the steady component of this electric field that drives the magnet current and provides for a steadily increasing magnet flux.
Plasma Magnet: Sailing the Solar Wind

Two polyphase magnetic coils (stator) are used to drive steady ring currents in the local plasma (rotor) creating an expanding magnetized bubble. Expansion is halted by solar wind pressure is in balance with the magnetic pressure from the driven currents ($R \geq 10$ km).

Applications:
- Multi-MW thruster leveraged from multi-KW RF power
- Magneto-braking in magnetosphere of outer planets
- Electrical power generation from back emf on RF field coils from solar plasma flow (solar windmill)
- Magnetic shielding of spacecraft from high energy solar particles
Currents driven by the RMF find an analogous representation in the ring currents formed when the magnetosphere is compressed by the solar wind.

The process of course is reversed for the plasma magnet where the driven ring current acts to expand the magnetic bubble pushing off the solar wind.
FUNDAMENTALS OF THE PLASMA SAIL CONCEPT:

• Once inflated, the interaction of the plasma magnet with the solar wind should be similar to that of the planetary magnetosphere or plasma sail.

• For strong interaction with the solar wind the magnetic bubble must be on the order of the solar wind proton Larmor radius (~ 100 km) and the ion inertial length (~70 km).

• Sufficiently large initial plasma Bubble assures the both inflation and strong interaction (plasma magnet)

Mini-Magnetospheric Plasma Propulsion

The density structure from MHD simulations

(a) on a global scale and
(b) near the region of the source

From G. Khazanov et al. AIAA JPC 2003

With \(v_{sw} = 500 \text{ km/s}, n_{sw} = 6 \text{ cm}^{-3} \)

20 km radius barrier receives
a force of 4 Newtons
Total thrust power \(\sim 2 \text{ MW} \)
The Magnetic Field Fall-off in the Sub-solar Direction for a 40 km Plasma Sail

From G. Khazanov et al.
AIAA JPC 2003

A dipole field of $B_z0 = 6$ G (6×10^5 nT) at 10 m was assumed.

Size of plasma sail scales with magnitude of dipole field. By employing the RMF, the size of the plasma sail is limited only by the power to overcome dissipation in the plasma:

$$\Rightarrow P_{sw} \sim \frac{\mu_0}{8\eta} v_{sw} R_0^2 P_{RMF} = 6 \times 10^3 R_0 P_{RMF}$$

Red line - MHD simulation with solar wind
Black line – without solar wind
Light Blue line - solar wind with increased dynamic pressure.
Thin dashed lines show $1/r$ and $1/r^2$ dependences for comparison.
A Plasma Magnetic Sail (PMS) could scale in principle to even higher powers with small nuclear source.

Power and exhaust velocity sufficient for rapid manned outer planetary missions.

Current propulsion systems.
Comparison of Kinetic and Fluid Treatment of the Solar Wind in the Plasma Sail Interaction

Contours show the density of the solar wind particles. Source particles are indicated in red.

• In the kinetic case (a), the source particles are lost from the bubble in the transverse direction.
• In the fluid case (b), the source particles are lost predominantly in the downstream direction.

$F_x \sim 3.4 \text{ N}$

$F_y \sim 1.4 \text{ N}$

Changing relative plasma sail size allows for thrust vectoring.
With magnetic bubble size determined by ambient solar wind pressure, force on plasma sail remains constant as spacecraft moves outward (or inward).

From this scaling, one could imagine moving in toward sun until 20 km plasma sail is reduced to 0.2 m (100,000:1). The scale of the sail is now on the order of the laboratory experiment.

The solar wind pressure is ~ 2 nP. The required pressure to compress down to the laboratory size is thus \((10^5)^2 \times 2 \times 10^{-9}\) or ~ 20 Pascals. The radial magnetic pressure from a 100 G magnetic field is ~ 40 Pascals.
Phase I Feasibility Experiments at the University of Washington

With the external magnetic field parallel to the polar axis, a radially inward pressure will oppose the plasma expansion, much like the solar wind will do in space. The plasma magnet will thus remain compressed at the meter scale from the kilometer scale.

Helmholtz pair produces external magnetic field
(Solar wind surrogate)
Even though the plasma may be more resistive than the superconducting wires of the MagSail, the huge difference in cross-sectional area that the plasma subtends (km\(^2\) vs. cm\(^2\)) minimizes the additional power requirement.
Two-Phase Oscillator Driver Circuits
Used to Obtain Rotating Magnetic Field

![Graph showing current Iant vs. time (msec)]

- Tuning Capacitors
- Current monitors
- Energy Storage Caps
- IGBT Switching supplies
In the Experiment the Initial Plasma was Provided by a Magnetized Cascaded Arc Source (MCAS).
Directed force from plasma gun can be substantial.
From probe measurements: \(I_{\text{dis}} \sim 2 \, \text{kA}, \, v_s \sim 35 \, \text{km/s} \) (H)

\[
F_z = \frac{dN}{dt} m_i v_s = 0.15 - 0.25 \, N
\]
Experimental Verification of the Plasma Magnet

- Up to 10 kA of plasma current have been generated and sustained
- Ring expansion pressure ~ 40 Pa sufficient for 1:100,000 expansion against the solar wind
- Plasma remains linked to RMF antenna in the presence of large axially directed plasma pressure from MCAS (~ 8 Pa).
Visible Spectra for Ar Plasma Magnet with Deuterium “Solar Wind”

From pictures and radiation → Plasma is fully ionized
Electron Temperature and Density from Double Langmuir Probe

Probe current for symmetric double probe:

\[I = i_+ \tanh \left(\frac{eV_B}{kT_e} \right) \]

where

\[i_+ = \frac{1}{2} n A_p \left(\frac{k(T_e + T_i)}{M_i} \right)^{\frac{1}{2}} \]

Current Probe (0.5 V/A)

2 mm x 0.5 mm diam Tungsten wire

\(T_e \sim 18 \text{ eV} \)
Magnetic Fields on Axis of the Plasma Magnet

B-dot loop tilted at 45° to pick up both B_z and B_{RMF} simultaneously
Plasma Magnet Density and Current Profile

Obtain J_θ from Amperes Law:

$$J_\theta = \frac{1}{\mu_0} \frac{dB_z}{dr}$$

Synchronous electrons

$\Rightarrow J_\theta = n_e \omega r$

Inferred rigid rotor density profile

Measured density

Total PM current $\sim 8 - 10 \text{ kA}$
Measurement of the Rotating Magnetic inside the Plasma Magnet as a Function of Radius

(From B-dot probe array)

Duration of RMF

Time (ms)

Int (dB/dt)

R (cm)

0 4 8 12 16 20 24 28 32

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Measurement of the Rotating Magnetic inside the Plasma Magnet as a Function of Radius

(From B-dot probe array)
Particle confinement in high beta dipolar field

\[\tau_N = \frac{\int \mathbf{n} \cdot d\mathbf{vol}}{D} \sim \frac{2\mu_0}{\eta \beta (3m - m^2)} \left(\left(\frac{r}{R} \right)^{m-3} - 1 \right) r^2 \]

where \(m \) is the power by which the density decreases (i.e. 1/r\(^m\)) from a characteristic surface that intercepts the equatorial plane at \(R \). With a density fall-off of \(1/r^3 \) (not critical but less than constant source fed)

\[N \sim 4\pi R^3 n_0 \ln \left(\frac{r}{R} \right) \quad \tau_N \sim \frac{2\mu_0}{3\eta \beta} \ln \left(\frac{r}{R} \right) r^2 \]

At high \(\beta \) (~1) and \(T_e \sim 20 \text{ eV} \) \(\eta \sim 1.5 \times 10^{-3} \quad T_e(\text{eV})^{-3/2} \Rightarrow 17 \mu\Omega\cdot\text{m} \)

For an \(R = 10 \text{ m} \) RMF antenna with sufficient current (density \(n_0 \sim 10^{17} \text{ m}^{-3} \) to inflate to a \(r=100 \text{ km} \) bubble:

\[m_{H} \frac{N}{\tau_N} = 1.8 \text{ mg} \quad \tau_N = 4.5 \times 10^7 \text{ s} \sim 1.5 \text{ years} \]
Motion of Electrons in Rotating Dipole Field

3-D Calculation of electron motion in rotating magnetic field

Present numerical work is aimed at self consistent motion with Self-generated hall currents
Summary

Phase I Results:

• A plasma magnet was generated and sustained in a space-like environment with a rotating magnetic field

• Sufficient current (~ 10 kA) was produced for inflation of plasma to 10s of km.

• Intercepted significant momentum pressure from an external plasma source without loss of equilibrium

• Plasma and magnetic pressure forces observed to be reacted on to rotating field coils through electromagnetic interaction
Further Work on the Plasma Magnet Sail

With successful Phase I testing, it is possible to perform the critical experiments necessary for concept validation in phase II.

• Construct a sufficiently large dielectric vacuum chamber and install a plasma magnet as well as an intensified solar wind surrogate source.

• Perform a scaled test of the PM with and without the solar wind source, and measure the thrust imparted to the PM.

• Measure all relevant plasma and field parameters for extrapolation to larger scale testing.

• Develop 2 and 3D numerical model for benchmarking against experimental results.
Phase II: Concept Validation: Thrust Measurement and Scalability of Plasma Magnetic Sail

- Want to maintain plasma magnet size with smaller antenna to observe expansion against Laboratory Solar Wind (LSW) \(D_{\text{Antenna}} \sim 1/4 \ (0.4 \text{ m}) - 0.1 \text{ m} \)
- With Constant force expansion/contraction need \(P_{\text{LW}} = P_{\text{SW}} = 2 \text{ MW} \)
- Want \(\rho_i/R \) to scale for kinetic effects \(V_{\text{LW}} \sim V_{\text{SW}} \sim 40 \text{ km/s} \)