Mid-Latitude SuperDARN Radar Infrastructure for the Study of Ionospheric Electrodynamics and Atmospheric Processes on Global Scales

A collaborative research project made possible by the National Science Foundation (NSF) Mid-Sized Infrastructure (MSI) grant ATM-0838219.

Mid-Latitude Radar Chain

Field of views from the completed chain of eight HF SuperDARN radars located at mid-latitudes providing coverage from Japan to Western Europe.

Mid-Latitude Near-Earth Science

Schematic representation of magnetosphere-ionosphere coupling from the ionosphere/upper-atmosphere perspective which shows some phenomena of interest, including magnetospheric plasma convection mapped into the ionosphere, density structuring of both the ionized and neutral gases, large-scale features such as the ionospheric trough and low-latitude density crests, inter-median-scale plumes and gravity waves, small-scale irregularities, and subauroral flow enhancements (electric fields). (Courtesy of J. Grabowsky)

Global-Scale Plasma Convection

Example 2-min plasma convection map from high-latitude SuperDARN HF radars.

Site Survey at FHSU

View of the first radar site on Fort Hays State University land, looking south from the nexus.

A Finished Radar

Transmitters and electronics at the Wallops Island radar.

Collaborating Institutions

- **J. Michael Ruohoniemi**
 - Raymond A. Greenwald
 - Johns Hopkins University
 - Applied Physics Laboratory, Laurel MD

- **William A. Bristow**
 - Geophysical Institute
 - University of Alaska Fairbanks, Fairbanks, AK

- **Simon G. Shepherd**
 - Thayer School of Engineering
 - Dartmouth College, Hanover NH

- **Elsayed R. Talaat**
 - Robin Barnes
 - Johns Hopkins University
 - Applied Physics Laboratory, Laurel MD